mdaload.m v1.0 manual

Dohn Alexander Arms

dohnarms@anl.gov

August 17, 2016

This MATLAB/Octave code is used to load MDA files created by the saveData program that
is part of EPICS. It will load files with MDA versions of 1.2, 1.3, and 1.4, which are the only
versions used currently. It will check for errors in the data file upon loading.

Installing the code is a matter of putting the file mdaload.m in the correct place for MATLAB
or Octave to find it.

The function in the code, mda = mdaload(filename), returns a data structure that mimicks
the native MDA file structure. There first is a header describing the multidimensional scan, followed
by the highest dimension scan, then all the lower dimension scans, and finally by an optional section
of extra PVs.

1 Data Structure
The returned data structure is described below. Unless specified as a string, all values are numbers.

mda.version [float32]

mda.scan_number [int32]

mda.data_rank [int16]

mda.dimensions(n) [int32] , n = 1:mda->data_rank
mda.regular [int16]

mda.scan [scan structure]

mda.extra [extra structure]

This section contains the global data values for the MDA file. version signifies the MDA format
version, normally 1.3. scan_number is the number assigned by saveData to the scan. data_rank
show the number of dimensions to the scan (for a 3-D scan, this is 3). The dimensions array (with
data_rank elements) contains the requested number of elements for each dimension of the scan,
starting with the highest dimensional scan; this is more of a guidance array, as in practice, the first
dimension of the top scan may be smaller, and individual scans may have different dimensionality
(making them irregular). regular signifies whether the dimensions of any of the scans were changed
while the overall scan was running. The scan structure holds the data in the form of a scan tree,
and the format is shown below. If extra is not empty, then are extra PVs present in the file, and
the format of this structure is also below.



1.1 Scans

scan.scan_rank [int16]
scan.requested_points [int32]
scan.last_point [int32]
scan.name [char]
scan.time [char]
scan.number_positioners [int16]
scan.number_detectors [int16]
scan.number_triggers [int16]
scan.positioners(n) : n = l:scan.number_positioners
positioners(n) .number [int16]
positioners(n) .name [char]
positioners(n).description [char]
positioners(n).step_mode [char]
positioners(n).unit [charl]
positioners(n).readback_name [char]
positioners(n) .readback_description [char]
positioners(n).readback_unit [char]
scan.detectors(n) , n = 1:scan.number_detectors
detectors(n) .number [int16]
detectors(n) .name [char]
detectors(n) .description [char]
detectors(n) .unit [char]
scan.triggers(n) , n = l:scan.numbers_triggers
triggers(n) .number [int16]
triggers(n) .name [char]
triggers(n) . command
scan.positioners_data(n,m) [float64] ,
n = l:scan.number_positioners, m = l:scan.last_point
scan.detectors_data(n,m) [float32] ,
n = l:scan.number_detectors, m = l:scan.last_point
scan.sub_scans(n) [scan structure] ,
n = l:scan.last_point if (scan->scan_rank > 1) else []

This section includes the scan data. It is also recursive in nature due to it being able to handle
arbitrary dimensionality.

scan_rank is the dimension of this scan. requested_points is how many points were wanted,
while last_point tells how many actually were finished. Due to how saveData saves MDA files,
only the top-level scan can be an incomplete scan, as higher scan values are not written until lower
scans are finished. name is the name of the scanner in EPICS, while time is when this particular
scan was started.

If a scan has a scan_rank greater than one, sub_scans will contain an array of the next lower
dimensional scans, of length last_point. For a multidimensional scan this creates a tree structure,
since each sub-scan can also have its own sub-scans. For a scan, the values for its positioners and
detectors apply to its sub_scans if they exist.



Table 1: Extra PV data type
’ pvs(n) .type ‘ Description

char string
int8 8-bit integer array
intlé 16-bit integer array
int32 32-bit integer array
float32 floating-point array
float64 double-precision floating-point array

number_positioners tells how many positioners are moved as part of this scan. The positioners
array, of length number_positioners, holds structures describing the positioners and readbacks.
number is the internal number the scanRecord uses to identify this positioner, while name is what
its called, and description describes it. step_mode is how the scan determined what step to
use: it can be linear, where the spacing between steps is equal; table, where the step positions
are read from an array; or fly, where the step positions are read back during an on-the-fly scan.
unit is the associated unit of the positioner. Similarly, for the readback, there is readback_name,
readback_description, and readback_unit.

The detector information is very similar to the positioners, as there is a detectors array of
length number_detectors. For each detector, there is also a number, name, description, and
unit.

The trigger information is again similar to the positioners, with a triggers array of length
number_triggers. Each trigger has a number and name associated to it, as well as a command,
which is a value sent to name to trigger.

The positioner data values are held in a two dimensional matrix named positioners_data,
of size last_point by number_positioners. The detector data values are in a similar matrix
detectors_data, of size last_point by number_detectors.

1.2 Extra PV’s

extra.number_pvs [int16]
extra.pvs(n) , n = extra.number_pvs
pvs(n) .name [char]
pvs(n) .description [charl]
pvs(n) .type [char]
pvs(n) .count [int16]
pvs(n) .unit [char]
pvs(n) .values [varied]

This section, which might be empty, contains extra PV’s recorded during the scan. number_pvs
is the number of PV’s contained, with the PV’s being held in an array pvs.

For each PV, there is the name string and description string. type lets you know what kind
of data type it is, with the correspondence seen in Table 1. count gives the number of elements in
the array (if type is char, it’s the string length) and unit string gives the unit for the values. The
values themselves are held in an array values.



